Your conditions: Anna Hnydiuk-Stefan
  • Energy Storage Performance of Hydrogen Fuel Cells Operating in a Marine Salt Spray Environment using Experimental Evaluation

    Subjects: Energy Science >> Technology of Energy Storage submitted time 2024-03-31

    Abstract: This work experimentally explores the influence of the sodium chloride pollution on the PEMFC performance in the marine salt spray environment by analyzing the concentration diffusion characteristics of the sodium chloride in the PEMFC membrane electrodes. Firstly, a set of experiments were carried out to determine the distribution of the sodium chloride components in the membrane electrodes, where five different salt spray environments (i.e., 100 mg/L, 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L of the salt component, respectively) were used/employed to analyze the concentration diffusion characteristics of the sodium chloride. Then, the obtained samples were microscopically characterized and elementally analyzed by the field emission scanning electron microscopy (FESEM) and the energy spectrometry. Subsequently, a least squares-based model was proposed to predict the diffusion rate of the contaminating ions in the membrane electrodes. Lastly, the pollution of the sodium chloride was evaluated/assessed to reveal the performance degradation of the PEMFCs. The experimental results demonstrated that (1) the sodium chloride fraction existed as crystals or ions in the membrane electrodes in the marine salt spray environment; (2) the sodium chloride poisoning was founded in the proton exchange membrane in the form of sodium ions; (3) and the sodium-to-chloride ratio was proportional to the contamination time and the salt spray in the proton exchange membrane.

  • Conventional and advanced exergy-exergoeconomic exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources

    Subjects: Energy Science >> Energy Science (General) submitted time 2024-03-29

    Abstract:     Considering the huge consumption of traditional energy and the rising demand for electricity, the development of renewable energy is very necessary. In this paper, an energy system integrating biomass energy, solar and two-stage organic Rankine cycle (ORC) is proposed, which uses the stable energy output of biomass energy to compensate for the volatility of solar modules. The proposed system comprises a biomass boiler, photovoltaic thermal panels (PV/T), evaporators, condensers, working medium pumps, turbines, a preheater and an air preheater. In addition, conventional and advanced exergy, exergoeconomic and exergoenvironmental (3E) analyses are carried out. Conventional 3E analyses reveal two components that require priority improvement. They are respectively evaporator 1 with the largest exergy destruction (708.2kW) and exergy destruction environmental impact rate (775.3 mPt/h) and evaporator 2 with the largest exergy destruction cost rate (19.15$/h). The results of advanced 3E analyses show that the largest avoidable endogenous exergy destruction is condenser 1 (136.6kW), the largest avoidable endogenous exergy destruction cost rate is condenser 2 (3.377$/h), and the largest avoidable endogenous exergy destruction environmental impact rate is condenser 1 (196.1mPt/h). These mean that these components have great potential for improvement in reducing exergy destruction, saving cost and protecting the environment. In addition, the avoidable endogenous exergy destruction/cost/environmental impact rate of evaporator 2 are negative, so evaporator 2 is not suitable as a priority component for improvement, which is contrary to the conclusions of conventional 3E analyses. It is found that conventional 3E analyses can only point out the biggest exergy destruction point, but cannot indicate whether the components with the greatest exergy destruction have the greatest potential for improvement. However, advanced 3E analyses can show the improvement potential of each component by improving its own performance and the external conditions. Therefore, it is necessary to conduct advanced 3E analyses.